Information Security Principles

Kitisak Jirawannakool Information Security Specialist

Agenda

- What is Security?
- Security Policies
- Risk Analysis
- Incident Handling
- Physical Security

How it used to be?

... and How it is growing to be?

What are we protecting?

- What is there to protect ?
 - Primary process
 - Customers, Employees, Identities
 - Products, Contracts
 - Supporting processes
 - Reputation
 - Information, infrastructure
 - Critical infrastructures
 - Health, lives

Situation is changing

* More network devices and users
* More communication opportunity
* More socializing

More chance for attackers to do their business

Attackers point of view

Important points

Awareness Training Collaboration **Technical Training Incident Response**

- Hardware
- Software
- Information
- Personnel (People)
- Service
- Location

What is Security?

What is security?

and and

THEFT

1.1

.

Photo credit: Wikimedia Commons user mattes, http://en.wikipedia.org/wiki/File:VTBS-luggage_screening.JPG

#0.7

What is security?

Security Goals

- C (Confidentiality)
- I (Integrity)
- A (Availability)

Security Mechanisms

- Authentication
- Access Control
- Encryption
- Signatures

What are attackers' targets?

- Systems
 - OS
 - Software installed
- Network
 - Sniffer
 - Spoofing
 - Flooding / DDoS
- Applications
- 🔅 Data
- Operation

Security myths: We are not a target

Security Myths : We are not a target

"Mostly I hear it from victims. They think they aren't worth hacking. Some say it's not worthwhile because they're a small business – not on anybody's radar. Others contend they don't collect Social Security numbers, credit card data or other 'valuable' information. They are usually wrong."

Alan Brill, senior managing director for the cybersecurity and information assurance practice at Kroll

Source: Ellen Messmer, 13 security myths you'll hear -- but should you believe? <u>http://</u> www.networkworld.com/news/2012/021412-security-myths-256109.html

Not be the weakest link

Information Security Today

e-Government Agenc

2.2

Security Framework

Management's Security Policy

- Provides Management's Goals and Objectives in writing
- Document Compliance
- Create Security Culture

Management's Security Policy

"Security is essential to this company and its future"

Policy Overview

Terminologies

- Procedures
 - Required step-by-step actions
- Baselines
 - Establish consistent implementation of security mechanism
 - Usually platform unique
- Guidelines
 - Recommendations for security product implementations, procurement & planning

PDCA

27

What is Risk?

- The probability that a particular threat will exploit a particular vulnerability.
- Need to systematically understand risks to a system and decide how to control them.

Pic source : <u>http://www.fiduciarytechnologiesinc.com/files/risk2.jpg</u>

The Elements of Risk

Asset	What we are trying to protect
Vulnerabilities	The weaknesses or faults in our system, processes, awareness or monitoring that could allow an attack to be successful
Threats	The enemy - The forces that may exploit a vulnerability (threat/vulnerability pairing) leading to a successful attack

Risk

Threats

Loss, Damage

Vulnerabilities

Risks

- Physical damage
- Human interaction
- Equipment malfunction
- Inside and outside attacks
- Data threats
- Application error

Physical threats

Common Vulnerabilities & Attacks

Vulnerabilities

- Network: Protocol manipulation, service misuse, plaintext data
- Program: Buffer Overflow, Format String Attack
- Operating System: Unpatched service
- Process/ Implementation: Weak/ sharing of password

Attacks

- Network: Sniffing, Denial of service
- Program/OS: Malicious code, SQL injection, XSS
- Social engineering attack

Risk, Response & Recovery

What is Risk Analysis?

- The process of identifying, assessing, and reducing risks to an acceptable level
 - Defines and controls threats and vulnerabilities
 - Implements risk reduction measures
- An analytic discipline with three parts:
 - Risk assessment: determine what the risks are
 - Risk management: evaluating alternatives for mitigating the risk
 - Risk communication: presenting this material in an understandable way to decision makers and/or the public

35

The Risk Equation

Why Risk Analysis?

- Security risks start when the power is turned-on. At that point, security risks commence. The only way to deal with those security risks is via risk management
- Risks can be identified & reduced, but never eliminated
- The purpose of Risk Analysis is to identify potential problems
 - Before they occur
 - So that risk-handling activities (controls and countermeasures) may be planned and invoked as needed
 - On a continuous basis across the life of the product, system, or project

Benefits of Risk Analysis

- Assurance that greatest risks have been identified and addressed
- Increased understanding of risks
- Mechanism for reaching consensus
- Support for needed controls
- Means for communicating results

Key Points

- Key Elements of Risk Analysis
 - Assets, Threats, Vulnerabilities, and Controls
- Most security risk analysis uses qualitative analysis
- Not a scientific process
 - Companies will develop their own procedure
 - Still a good framework for better understanding of system security

Risk Analysis Steps

http://www.corpsnedmanuals.us/DeepDraftNavigation/DDNIncludes/Images/DDNFig2_2RskInfmdDecMkg.png

Risk Management Measurement

Risk Management identifies and prioritizes risks

(Threats, Vulnerability, & Asset Value)

Mitigating controls reduce risk:

Total Risk – Mitigating Controls

Residual risk should be set to an acceptable level

Approaches to Risk Analysis

Quantitative vs Qualitative Risk Analysis

Most organizations will use a hybrid of both approaches to risk assessment.

Who should be Involved?

- Security Experts
- Internal domain experts
 - Knows best how things really work
- Top management level responsible for accepting risks
- Managers responsible for implementing controls
- Asset owners ****

Threats

- An expression of intention to inflict evil injury or damage
- Attacks against key security services
 Confidentiality, integrity, availability

Vulnerabilities

- Flaw or weakness in system that can be exploited to violate system integrity.
 - Security Procedures
 - Design
 - Implementation
- Threats trigger vulnerabilities
 - Accidental
 - Malicious

How to define causes of Risk?

- Assets selection
- Asset identification
- Threats
- Vulnerabilities
- Depends on what do you concern

Controls/Countermeasures

Mechanisms or procedures for mitigating vulnerabilities

- Detect
- Recover
- Understand cost and coverage of control
- Controls follow vulnerability and threat analysis

Risk/Control Trade Offs

Only Safe Asset is a Dead Asset

- Asset that is completely locked away is safe, but useless
- Trade-off between safety and availability
- Do not waste effort on efforts with low loss value
 - Don't spend resources to protect garbage
- Control only has to be good enough, not absolute
 - Make it tough enough to discourage enemy

Risk Example by Asset types

- Hardware
- Software
- Information
- Personnel (People)
- Service
- Location

Hardware

- Asset : Web server
- Threats
 - Hardware failure
- Vulnerabilities
 - Lack of system monitoring
 - Lack of maintenance process
- Controls
 - Monitoring system use (A.10.10.2)
 - Maintenance contract expanded

- Asset : Windows 8
- Threats
 - Use of Pirated Software
- Vulnerabilities
 - Lack of policy restricting staff to use licensed software
 - Lack of user awareness
- Controls
 - Acceptable use of assets
 - Establish formal disciplinary process

Information

Asset : Confidential files

- Threats
 - Disclosure of confidential information
- Vulnerabilities
 - Lack of information & document classification and handling procedure
 - Lack of Physical security
 - Lack of User awareness
- Controls
 - Establish or implement procedures in information handling
 - Define rules for working in secure areas
 - Information Security Education and Training

Personnel

- Asset : Clerk
- Threats
 - Operational Staff or User Errors
- Vulnerabilities
 - Lack of efficient and effective configuration change control
 - Lack of technical skill
 - Lack of User awareness
- Controls
 - Establish change control management
 - Information Security Education and Training

- Asset : Clerk
- Threats
 - Resign
- Vulnerabilities
 - Lack of cross-function / backup staff
 - Poor employee relationship management
- Controls
 - Provide cross-functional training for key job function
 - Management should provide the resources needed

- Asset : Network system
- Threats
 - Failure of communication services
- Vulnerabilities
 - Lack of redundancy
- Controls
 - Arrange backup internet service
 - Use redundant Internet service (two ISPs)

Location

- Asset : Head office building
- Threats
 - Sabotage
- Vulnerabilities
 - Lack of Physical Security
 - Lack of Change Management Controls
- Controls
 - Implement environment threats protection
 - Establish formal physical entry controls
 - Establish change control management

Group Activity#1 - Risk assessment

- Separate into 3 groups
 - IT Support
 - Server/Network Administrator
 - Software/Web Development
- Define your assets in your organization
- Try to think about threats and countermeasure which is possibly related to your assets above
- and present
- 30 minutes

Risk Management

Avoid Accept RISK Reduce Transfer

When Risks are happened

What should we do, if we are management level?
 In case of Facebook and Youtube are risks

Risk Management

ACCEPT

REDUCE

TRANSFER/SHARE

Key to success for IT security implementation

- Supported by CEO or management level
- Implement most suitable IT security tools (both quality and budget)
- Every departments are involved to do risk assessment/analysis
- All of employees have awareness

Incident 2016 (Jan - Jun)

Web attacks by categories

- Unauthorized File Upload
- Web Defacement
- SQL Injection
- Remote Command Execution
- Directory Traversal
- Local File Inclusion
- Remote File Inclusion
- PHP Injection
- Brute Force Website Logins
- Insecure Direct Object References
- Unauthorized Upload File
- Directory Traversal
- Cross Site Script

What are we facing recently?

100 Thai Government Sites Hacked, Abused for Malware Distribution and Phishing Attacks

s	COMPANIES	OPINION	POLITICS	TECHNOLOGY	SP
---	-----------	---------	----------	------------	----

Thai government websites hacked by Islamist group

IANS I Bangkok August 24, 2015 Last Updated at 14:30 IST

Why?

65

Threat Landscapes

- Exploitation
- Web application hacking
- Botnet
- Malware/ Ransomeware
- Phishing/ Spear Phishing
- Port scanning
- Brute force (Login attempts)

anything else?

Exploitations

- Target on 0-day vulnerabilities
- Heartbleed

ShellShock

root@ubuntu:~# env x='() { :;}; echo vulnerable' bash -c "echo this is a test" vulnerable this is a test

Web Attacking

- Web Defacement
- Malicious script spreading
- Phishing
- Database and Credential stolen

Why we need web application security?

69

Network Security is not enough

- Network Security Mostly Ignores the Contents of HTTP Traffic, such as....
 - Firewalls, SSL, Intrusion Detection Systems
 - Operating System Hardening, Database Hardening
- Need to secure web application (Not Network Security)
 - Securing the "custom code" that drives a web application
 - Securing libraries
 - Securing backend systems
 - Securing web and application servers
- Cloud Computing is coming, the infrastructure is secured by the provider <u>but we are still need to secure our</u> <u>application</u>.

70

OWASP

- Open Web Application Security Project
- http://www.owasp.org
- Open group focused on understanding and improving the security of web applications and web services!
- Hundreds of volunteer experts from around the world

OWASP The Open Web Application Security Project http://www.owasp.org

Navigation

Main Page

- Home
- News
- OWASP Projects
- Downloads
- Local Chapters
- Global Committees
- AppSec Job Board
- AppSec Conferences
- Presentations
- Video
- Press
- Get OWASP Books
- Get OWASP Gear
- Mailing Lists
- About OWASP
- Membership

Reference

- How To...
- Principles
- Threat Agents
- Attacks
- Vulnerabilities
- Controls

V	Nel	come	to	OW	ASP	

the free and open application security community Is your software ope Make sure you

OWASP
 Summit 2011
 Top Ten
 WebScarab
 ESAPI
 ASVS
 AntiSamy

About • Searching • Editing • New Article • OWASP Categories

OWASP Top 10 2013

- Injection
- Broken Authentication and Session Management
- Cross-Site Scripting(XSS)
- Insecure Direct Object Reference
- Security Misconfiguration
- Sensitive Data Exposure
- Missing Function Level Access Control
- Cross-Site Request Forgery(CSRF)
- Using Components with Known Vulnerability
- Unvalidated Redirects and Forwards

Discussions about web app security

- Lack of security awareness
- A lot of misunderstanding
 - Network firewall can also protect web applications
 - Security is only network security and ISO standard
- Lack of secure coding skills
- Need web application firewall implemented
- Need web application audit

Botnet & DDoS

Distributed Denial of Service (DDoS) - Flooding

Over consuming

Your server is like the donkey, and no, it's not the donkey's fault

Hello Single Gateway !!!!!!!!

Anonymous @LatestAnonNews · 18 ชั่วโมง

We hear you, Thailand. เรา ได้ยินเสียงคุณ. And we will not give up until our mission is complete. #OpSingleGateway

anonymousAsia และ F5CyberArmy

178 🛧 45 🚥

Investigation

- MICT website is running on G-Cloud
- Protections on G-Cloud
 - Next generation firewall
 - Web Application firewall
 - Reverse proxy
- Website is developed by using PHP
 - performance issue
- We found almost 100,000 Unique IPs requested
- This requests consume 48.9 GBytes

Unique IPs and G-Byte consuming

Impacts

Security benefits on G-Cloud

- Firewall (Next-gen firewall/Application firewall)
- SSL-VPN for Cloud Management
- Two factors Authentication
- Vulnerability Assessment
- ISO/IEC 27001:2013 implementation
- IPv6 installed
- Security monitoring
- Security training courses for customers

IoT era

http://blog.trendmicro.com/trendlabs-security-intelligence/organizational-challenges-in-the-internet-of-things/

G-CERT

http://www.thelastdogwatch.org/wp-content/uploads/2015/08/Internetf2-1424374486017.jpg

EGA

7 Enterprise risk need to consider

- Disruption and denial-of-service attacks
- Understanding the complexity of vulnerabilities
- IoT vulnerability management
- Identifying, implementing security controls
- Fulfilling the need for security analytics capabilities
- Modular hardware and software components
- Rapid demand in bandwidth requirement

Incident Handling

Overview - Typical IT Security

More Security Doesn't Make You More Secure Better Management Does.

Controls will be bypassed

Traditional Incident Response

Adhoc & Unplanned

Deal with it as it happens

Prolonged Recovery Times

Damage to Company

Lack of Metrics

Legal Issues

Bad Guys/Gals Getting Away

G-CE

You In Line of Fire

Incident Response plan

IR Plan - Preparation

- Build the secured infrastructure
- Security policy
- Setup the monitoring system
- Prepare IR Team and process

IR Plan - Detect & Analysis

- Setup the monitoring system
- Read logs
- Maybe someone reports
- Analysis when something's happened

IR Plan - Response, Eradication and Recovery

- Find the attackers and how
- Remove or correct the system
- Operate the system again

IR Plan - Post incident activities

- Study from the attacks
- Prepare the protections
- Keep record

Physical Security

Physical threats

Why don't people think about Physical Security?

- Don't think it's a threat
- Impossible to secure
- Not enough resources or knowledge
- Haven't got around to it

Espionage

- Frequently use physical attacks
- Over 100 billion annually in cost
- Large attacks can be "game over"
- Social Engineering w/ minimal physical attacks have accomplished most large attacks

Social Engineering and Information Gathering

- Social Engineering
 - Co-worker
 - Salesman
 - Interviews
 - Reference checks
 - Impersonation
- Information Gathering
 - Interviews
 - Prospective clients
 - Public tours
 - Dumpster diving
 - Off-site observation
 - Internet

102

Defence in Depth

e-Government Agency

103

Physical Security Controls

Administrative controls

Facility location, construction, and management.

Physical security risks, threats, and countermeasures.

*<u>Technical controls</u>

Authenticating individuals and intrusion detection.

Electrical issues and countermeasures.

Fire prevention, detection, and suppression.

Physical controls

- Perimeter & Building Grounds.
- Building Entry Point.
- Box-within a box Floor Plan.
- Data Centers or Server Room Security.

Technical Controls – Entrance Protection

Entry access control systems

Turnstiles

- Revolving doors that can be activated to "lock" and not allow unauthorized individuals to enter or leave facility
- To prevent "piggybacking".

Mantraps

Routing people through two stationary doorways

Fail-safe

Door defaults to being <u>unlocked</u>.

Fail-secure

*Door defaults to being locked.

Technical Controls

Entry access control systems – Locks

Mechanical locks:

- Key
- Combination locks
- Magnetic locks

Electronic locks:

- Combination lock
- Proximity / RFID badge
- Bio-metric

EHILD.

iCLASS

Technical Controls

Intrusion detection & surveillance systems

- IDS: Sensors that detect access into a controlled area:
 - Photoelectric
 - Ultrasonic
 - Microwave
 - Passive infrared
 - Pressure sensitive

Intrusion Detection & Surveillance Systems

Closed-circuit television (<u>CCTV</u>)

- Detect the presence of an object.
- <u>Recognition</u> of object type.
- Identification of object details.

Surveillance Systems

CCTV camera considerations

- Charge-coupled device (CCD) converts pixels into data signals
- *<u>Cathode ray tube</u> (CRT) converts picture image into data signals
- Field-of-view is the area that can be captured by the camera lens.
- Depth-of-field is the area between the nearest and farthest points that appear to be in focus.
- Monochrome or <u>color</u> camera.

Electrical Power Supply

Risks to electrical power supply:

- *Blackout: complete loss of commercial power
- Fault: momentary power outage
- *<u>Brownout</u>: an intentional reduction of voltage by a power company.
- Sag/dip: a short period of low voltage
- Surge: a sudden rise in voltage in the power supply.
- *In-rush current: the initial surge of current required by a load before it reaches normal operation.
- Transient: line noise or disturbance is superimposed on the supply circuit and can cause fluctuations in electrical power

Electrical Power Supply

Counter measures to electrical power supply risks:

*<u>Uninterruptible power supply</u> (UPS) (include transfer switch, battery, transformer, generator, circuit switch, and power distribution unit (PDU))

For blackout and fault

*<u>Surge protector</u>, circuit breaker, transformer, and UPS

For brownout, sag/dip, surge, in-rush current, and transient

Electrostatic Discharge

Risk of electrostatic discharge:

A type of electrical surge can occur when two non-conducting materials rub together, causing electrons to transfer from one material to another.

Countermeasures: Anti-electrostatic discharge (<u>ESD</u>) standards

- Comparison of equipment to a common point ground.
- *<u>Grounding of personnel</u>: wrist strap, flooring, clothing and footwear.
- Protected area: Flooring, seating, <u>ionization of air</u>, and <u>humidity control</u>.

112

Marking of equipment, package and facility.

Example: Data center: grounding of rack & floors to a common ground, raised floor tiles have conductive gold leafs to support frame to dissipate ESD.

•**EGA**

Heating, Ventilating and Air Conditioning (HVAC)

Types of HVAC systems:

<u>Up-flow</u> (forced air above the floor) vs. <u>down-flow</u> (forced air below the raised floor).

♦<u>Water</u> or <u>Glycol</u>.

HVAC considerations:

Air volume cubic feet per minute (<u>CFM</u>) per ton.

*<u>Humidity control</u> (RH 45% - 60%).

Temperature control (72°F ± 2°F).

♦<u>Air Filters</u>.

- Positive air pressure.
- *Protected intake vents.
- Alarms: Leak detection, loss of power, temperature, humidity, fire smoke detector.

Water Supply System

- For <u>cooling</u>, <u>plumbing</u>, <u>sewage</u>, and <u>fire-suppression</u> (outside of server room).
- ♦Water source.
- ♦Water <u>usage</u>.
 - Volume of water.
 - Water filtration.
 - Environmental impact.
- Water pump to maintain pressure.

Types of Fire

Fire Class	Type of Fire	Elements of Fire	Suppression Method
Class A	Common Combustibles	Ashes, paper, wood, cloth, etc.	Water, Soda acid
Class B	Liquid	Barrels of oils, Petroleum, tars, solvents, alcohol, gases	Halon, CO ₂ , FM-200
Class C	Electrical	Circuits, electrical equipment, and wires	Halon, CO_2 , or Non-conductive extinguishing agent – FM-200
Class D	Dry Chemical	Combustible metals, and chemical	Dry Powder, Halon
Class K	Commercial Kitchen	Food, Grease	Wet Chemicals - Foam

Fire Suppression Systems

♦ Halon

Used so that equipment is not damaged by water.

*<u>FM-200</u>

- Replacement for Halon without ozone depleting chemicals.
- It uses chemicals instead of water.

Carbon Dioxide

Does not leave reside after use, does not cause damage to sensitive devices.

Can suffocate people.

Dry Chemicals

Not effective against electrical fires.

Types of systems

- Wet pipe
- Dry pipe
- Deluge system
- Pre-Action
- Foam water sprinkler
- Water spray
- Water mist systems

Fire/ Smoke Detection

Ionization-type smoke detector detect charged particles in smoke.

Optical (photoelectric) smoke detectors react to light blockage because of smoke

Fixed or rate-of-rise <u>temperature sensor</u>.

Examples of Design Failure

119

Surveillance

120

More Examples of Design Failure

Thank you

